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Abstract

Source and channel coding over multiuser channels in which receivers have access to correlated

source side information is considered. For several multiuser channel models necessary and sufficient

conditions for optimal separation of the source and channelcodes are obtained. In particular, the multiple

access channel, the compound multiple access channel, the interference channel and the two-way channel

with correlated sources and correlated receiver side information are considered, and the optimality of

separation is shown to hold for certain source and side information structures. Interestingly, the optimal

separate source and channel codes identified for these models are not necessarily the optimal codes for

the underlying source coding or the channel coding problems. In other words, while separation of the

source and channel codes is optimal, the nature of these optimal codes is impacted by the joint design

criterion.
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I. INTRODUCTION

Shannon’s source-channel separation theorem states that,in point-to-point communication

systems, a source can be reliably transmitted over a channelif and only if the minimum source

coding rate is below the channel capacity [1]. This means that a simple comparison of the rates

of the optimal source and channel codes for the underlying source and channel distributions,

respectively, suffices to conclude whether reliable transmission is possible or not. Furthermore,

the separation theorem dictates that the source and channelcodes can be designed independently

without loss of optimality. This theoretical optimality ofmodularity has reinforced the notion

of network layers, leading to the separate development of source and channel coding aspects

of a communication system. The separation theorem holds forstationary and ergodic sources

and channels under the usual information theoretic assumptions of infinite delay and complexity

(see [2] for more general conditions under which separationholds). However, Shannon’s source-

channel separation theorem does not generalize to multiuser networks.

Suboptimality of separation for multiuser systems was firstshown by Shannon in [3], where

an example of correlated source transmission over the two-way channel was provided. Later, a

similar observation was made for transmitting correlated sources over multiple access channels

(MACs) in [4]. The example provided in [4] reveals that comparison of the Slepian-Wolf source

coding region [5] with the capacity region of the underlyingMAC is not sufficient to decide

whether reliable transmission can be realized.

In general communication networks have multiple sources available at the network nodes,

where the source data must be transmitted to its destinationin a lossless or lossy fashion. Some

(potentially all) of the nodes can transmit while some (potentially all) of the nodes can receive

noisy observations of the transmitted signals. The communication channel is characterized by

a probability transition matrix from the inputs of the transmitting terminals to the outputs of

the receiving terminals. We assume that all the transmissions share a common communications

medium; special cases such as orthogonal transmission can be specified through the channel

transition matrix. The sources come from an arbitrary jointdistribution, that is, they might be

correlated. For this general model, the problem we address is to determine whether the sources

can be transmitted losslessly or within the required fidelity to their destinations for a given

number of channel uses per source sample (cupss), which is defined to be thesource-channel
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rate of the joint source channel code. Equivalently, we might want to find the minimum source-

channel rate that can be achieved either reliably (for lossless reconstruction) or with the required

reconstruction fidelity (for lossy reconstruction).

The problem of jointly optimizing source coding along with the multiuser channel coding

in this very general setting is extremely complicated. If the channels are assumed to be noise-

free finite capacity links, the problem reduces to a multiterminal source coding problem [1];

alternatively, if the sources are independent, then we mustfind the capacity region of a general

communication network. Furthermore, considering that we do not have a separation result for

source and channel coding even in the case of very simple networks, the hope for solving this

problem in the general setting is slight.

Given the difficulty of obtaining a general solution for arbitrary networks, our goal here

is to analyze in detail simple, yet fundamental, building blocks of a larger network, such as

the multiple access channel, the broadcast channel, the interference channel and the two-way

channel. Our focus in this work is on lossless transmission and our goal is to characterize the

set of achievable source-channel rates for these canonicalnetworks. Four fundamental questions

that need to be addressed for each model can be stated as follows:

1) Is it possible to characterize the optimal source-channel rate of the network (i.e., the mini-

mum number of channel uses per source sample (cupss) required for lossless transmission)

in a computable way?

2) Is it possible to achieve the optimum source-channel rateby statistically independent source

and channel codes? By statistical independent source and channel codes, we mean that the

source and the channel codes are designed solely based on thedistributions of the source

and the channel distributions, respectively. In general, these codes need not be the optimal

codes for the underlying sources or the channel.

3) Can we determine the optimal source-channel rate by simply comparing the source coding

rate region with the capacity region?

4) If the comparison of these canonical regions is not sufficient to obtain the optimal source-

channel rate, can we identify alternative finite dimensional source and channel rate regions

pertaining to the source and channel distributions, respectively, whose comparison provides

us the necessary and sufficient conditions for the achievability of a source-channel rate?

If the answer to question (3) is affirmative for a given setup,this would maintain the optimality
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of the layered approach described earlier, and would correspond to the multiuser version of Shan-

non’s source-channel separation theorem. However, even when this classical layered approach

is suboptimal, we can still obtain modularity in the system design, if the answer to question

(2) is affirmative, in which case the optimal source-channelrate can be achieved by statistically

independent source and channel codes, without taking the joint distribution into account.

In the point-to-point setting, the answer to question (3) isaffirmative, that is, the minimum

source-channel rate is simply the ratio of the source entropy to the channel capacity; hence

these two numbers are all we need to identify the necessary and sufficient conditions for the

achievability of a source-channel rate. Therefore, a source code that meets the entropy bound

when used with a capacity achieving channel code results in the best source-channel rate. In

multiuser scenarios, we need to compare more than two numbers. In classical Shannon separation,

it is required that the intersection of the source coding rate region for the given sources and the

capacity region of the underlying multiuser channel is not empty. This would definitely lead to

modular source and channel code design without sacrificing optimality. However, we show in

this work that, in various multiuser scenarios, even if thisis not the case for the canonical source

coding rate region and the capacity region, it might still bepossible to identify alternative finite

dimensional rate regions for the sources and the channel, respectively, such that comparison

of these rate regions provide the necessary and sufficient conditions for the achievability of a

source-channel rate. Hence, the answer to question (4) can be affirmative even if the answer to

question (3) is negative. Furthermore, we show that in thosecases we also have an affirmative

answer to question (2), that is, statistically independentsource and channel codes are optimal.

Following [6], we will use the following definitions to differentiate between the two types of

source-channel separation.Informational separationrefers to classical separation in the Shannon

sense, in which concatenating optimal source and channel codes for the underlying source

and channel distributions result in the optimal source-channel coding rate. Equivalently, in

informational separation, comparison of the underlying source coding rate region and the channel

capacity region is sufficient to find the optimal source-channel rate and the answer to question

(3) is affirmative.Operational separation, on the other hand, refers to statistically independent

source and channel codes that are not necessarily the optimal codes for the underlying source

or the channel. Optimality of operational separation allows the comparison of more general

source and channel rate regions to provide necessary and sufficient conditions for achievability
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of a source-channel rate, which suggests an affirmative answer to question (4). These source

and channel rate regions are required to be dependent solelyon the source and the channel

distributions, respectively; however, these regions neednot be the canonical source coding

rate region or the channel capacity region. Hence, the source and channel codes that achieve

different points of these two regions will be statisticallyindependent, providing an affirmative

answer to question (2), while individually they may not be the optimal source or channel codes

for the underlying source compression and channel coding problems. Note that the class of

codes satisfying operational separation is larger than that satisfying informational separation. We

should remark here that we are not providing precise mathematical definitions for operational

and information separation. Our goal is to point out the limitations of the classical separation

approach based on the direct comparison of source coding andchannel capacity regions.

This paper provides answers to the four fundamental questions about source-channel coding

posed above for some special multiuser networks and source structures. In particular, we consider

correlated sources available at multiple transmitters communicating with receivers that have

correlated side information. Our contributions can be summarized as follows.

• In a multiple access channel we show that informational separation holds if the sources

are independent given the receiver side information. This is different from the previous

separation results [7]- [9] in that we show the optimality ofseparation for an arbitrary

multiple access channel under a special source structure. We also prove that the optimality

of informational separation continue to hold for independent sources in the presence of

correlated side information at the receiver, given which the sources are correlated.

• We characterize an achievable source-channel rate for compound multiple access channels

with side information, which is shown to be optimal for some special scenarios. In particular,

optimality holds either when each user’s source is independent from the other source and

one of the side information sequences, or when there is no multiple access interference at

the receivers. For these cases we argue that operational separation is optimal. We further

show the optimality of informational separation when the two sources are independent given

the side information common to both receivers. Note that thecompound multiple access

channel model combines both the multiple access channels with correlated sources and the

broadcast channels with correlated side information at thereceivers.

• For an interference channel with correlated side information, we first define thestrong
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source-channel interferenceconditions, which provide a generalization of the usual strong

interference conditions [10]. Our results show the optimality of operational separation under

strong source-channel interference conditions for certain source structures.

• We consider a two-way channel with correlated sources. The achievable scheme for com-

pound MAC can also be used as an achievable coding scheme in which the users do not

exploit their channel outputs for channel encoding (‘restricted encoders’). We generalize

Shannon’s outer bound for two-way channels to correlated sources.

Overall, our results characterize the necessary and sufficient conditions for reliable transmis-

sion of correlated sources over various multiuser networks, hence answering question (1) for

those scenarios. In these cases, the optimal performance isachieved by statistically independent

source and channel codes (by either informational or operational separation), thus promising

a level of modularity even when simply concatenating optimal source and channel codes is

suboptimal. Hence, for the cases where we provide the optimal source-channel rate, we answer

questions (2), (3) and (4) as well.

The remainder of the paper is organized as follows. We reviewthe prior work on joint source-

channel coding for multiuser systems in Section II, and the notations and the technical tools that

will be used throughout the paper in Section III. In Section IV, we introduce the system model

and the definitions. The next four sections are dedicated to the analysis of special cases of the

general system model. In particular, we consider multiple access channel model in Section V,

compound multiple access channel model in Section VI, interference channel model in Section

VII and finally the two-way channel model in Section VIII. Ourconclusions can be found in

Section IX followed by the Appendix.

II. PRIOR WORK

The existing literature provides limited answers to the four questions stated in Section I in

specific settings. For the MAC with correlated sources, finite-letter sufficient conditions for

achievability of a source-channel rate are given in [4] in anattempt to resolve the first problem;

however, these conditions are later shown not to be necessary by Dueck [11]. Thecorrelation

preserving mappingtechnique of [4] used for achievability is later extended tosource coding

with side information via multiple access channels in [12],to broadcast channels with correlated

sources in [13], and to interference channels in [14]. In [15], [16] a graph theoretic framework was

DRAFT



7

used to achieve improved source-channel rates for transmitting correlated sources over multiple

access and broadcast channels, respectively. A new data processing inequality was proved in [17]

that is used to derive new necessary conditions for reliabletransmission of correlated sources

over MACs.

Various special classes of source-channel pairs have been studied in the literature in an effort

to resolve the third question above, looking for the most general class of sources for which the

comparison of the underlying source coding rate region and the capacity region is sufficient to

determine the achievability of a source-channel rate. Optimality of separation in this classical

sense is proved for a network of independent, non-interfering channels in [7]. A special class of

the MAC, called the asymmetric MAC, in which one of the sources is available at both encoders,

is considered in [8] and the classical source-channel separation optimality is shown to hold with

or without causal perfect feedback at either or both of the transmitters. In [9], it is shown that for

the class of MACs for which the capacity region cannot be enlarged by considering correlated

channel inputs, classical separation is optimal. Note thatall of these results hold for a special

class of MACs and arbitrary source correlations.

There have also been results for joint source-channel codesin broadcast channels. Specifically,

in [6], Tuncel finds the optimal source-channel rate for broadcasting a common source to multiple

receivers having access to different correlated side information sequences, thus answering the first

question. This work also shows that the comparison of the broadcast channel capacity region and

the minimum source coding rate region is not sufficient to decide whether reliable transmission

is possible. Therefore, the classical informational source-channel separation, as stated in the

third question, does not hold in this setup. Tuncel also answers the second and fourth questions,

and suggests that we can achieve the optimal source-channelrate by source and channel codes

that are statistically independent, and that, for the achievability of a source-channel rateb, the

intersection of two regions, one solely depending on the source distributions, and a second one

solely depending on the channel distributions, is necessary and sufficient. The codes proposed

in [6] consist of a source encoder that does not use the correlated side information, and a joint
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source-channel decoder; hence they are not stand-alone source and channel codes1. Thus the

techniques in [6] require the design of new codes appropriate for joint decoding with the side

information; however, it is shown in [18] that the same performance can be achieved by using

separate source and channel codes with a specific message passing mechanism between the

source/channel encoders/decoders. Therefore we can use existing near-optimal codes to achieve

the theoretical bound.

Broadcast channel in the presence of receiver message side information, i.e., messages at

the transmitter known partially or totally at one of the receivers, is also studied from the

perspective of achievable rate regions in [20] - [23]. The problem of broadcasting with receiver

side information is also encountered in the two-way relay channel problem studied in [24], [25].

III. PRELIMINARIES

A. Notation

In the rest of the paper we adopt the following notational conventions. Random variables will

be denoted by capital letters while their realizations willbe denoted by the respective lower

case letters. The alphabet of a scalar random variableX will be denoted by the corresponding

calligraphic letterX , and the alphabet of then-length vectors over then-fold Cartesian product

by X n. The cardinality of setX will be denoted by|X |. The random vector(X1, . . . , Xn) will be

denoted byXn while the vector(Xi, Xi+1, . . . , Xn) by Xn
i , and their realizations, respectively,

by (x1, . . . , xn) or xn and (xi, xi+1, . . . , xn) or xn
i .

B. Types and Typical Sequences

Here, we briefly review the notions of types and strong typicality that will be used in the

paper. Given a distributionpX , the typePxn of an n-tuple xn is the empirical distribution

Pxn =
1

n
N(a|xn)

1Here we note that the joint source-channel decoder proposedby Tuncel in [6] can also be implemented by separate source

and channel decoders in which the channel decoder is a list decoder [19] that outputs a list of possible channel inputs. However,

by stand-alone source and channel codes, we mean unique decoders that produce a single codeword output, as it is understood

in the classical source-channel separation theorem of Shannon.
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whereN(a|xn) is the number of occurances of the lettera in xn. The set of alln-tuplesxn

with typeQ is called the type classQ and denoted byT n
Q. The set ofδ-strongly typicaln-tuples

according toPX is denoted byT n
[X]δ

and is defined by

T n
[X]δ

=
{

x ∈ X n :

∣

∣

∣

∣

1

n
N(a|xn) − PX(a)

∣

∣

∣

∣

≤ δ∀a ∈ X andN(a|xn) = 0 wheneverPX(x) = 0
}

.

The definitions of type and strong typicality can be extendedto joint and conditional distri-

butions in a similar manner [1]. The following results concerning typical sets will be used in

the sequel. We have
∣

∣

∣

∣

1

n
log |T n

[X]δ
| − H(X)

∣

∣

∣

∣

≤
δ

|X |
(1)

for sufficiently largen. Given a joint distributionPXY , if (xi, yi) is drawn independent and

identically distributed (i.i.d.) withPXPY for i = 1, . . . , n, wherePX andPY are the marginals,

then

Pr{(xn, yn) ∈ T n
[XY ]δ

} ≤ 2−n(I(X;Y )−3δ). (2)

Finally, for a joint distributionPXY Z, if (xi, yi, zi) is drawn i.i.d. with PXPY PZ for i =

1, . . . , n, wherePX , PY andPZ are the marginals, then

Pr{(xn, yn, zn) ∈ T n
[XY Z]δ

} ≤ 2−n(I(X;Y,Z)+I(Y ;X,Z)+I(Z;Y,X)−4δ). (3)

IV. SYSTEM MODEL

We introduce the most general system model here. Throughoutthe paper we consider various

special cases, where the restrictions are stated explicitly for each case.

We consider a network of two transmittersTx1 and Tx2, and two receiversRx1 and Rx2.

For i = 1, 2, the transmitterTxi observes the output of a discrete memoryless (DM) sourceSi,

while the receiverRxi observes DM side informationWi. We assume that the source and the

side information sequences,{S1,k, S2,k, W1,k, W2,k}
∞
k=1 are i.i.d. and are drawn according to a

joint probability mass function (p.m.f.)p(s1, s2, w1, w2) over a finite alphabetS1×S2×W1×W2.

The transmitters and the receivers all know this joint p.m.f., but have no direct access to each

other’s information source or the side information.

The transmitterTxi encodes its source vectorSm
i = (Si,1, . . . , Si,m) into a channel codeword

Xn
i = (Xi,1, . . . , Xi,n) using the encoding function

f
(m,n)
i : Sm

i → X n
i , (4)
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Channel

Sm
1

Sm
2

Xn
1

Xn
2

Y n
1

Y n
2

W m
1

W m
2

(Ŝm
1,1, Ŝ

m
1,2)

(Ŝm
2,1, Ŝ

m
2,2)

p(y1, y2|x1, x2)

Transmitter 1

Transmitter 2

Receiver 1

Receiver 2

Fig. 1. The general system model for transmitting correlated sources over multiuser channels with correlated side information.

In the MAC scenario, we have only one receiverRx1; in the compound MAC scenario, we have two receivers which want to

receive both sources, while in the interference channel scenario, we have two receivers, each of which wants to receive only its

own source. The compound MAC model reduces to the “restricted” two-way channel model whenW m
i = Sm

i for i = 1, 2.

for i = 1, 2. These codewords are transmitted over a DM channel to the receivers, each of which

observes the output vectorY n
i = (Yi,1, . . . , Yi,n). The input and output alphabetsXi andYi are all

finite. The DM channel is characterized by the conditional distributionPY1,Y2|X1,X2(y1, y2|x1, x2).

Each receiver is interested in one or both of the sources depending on the scenario. Let receiver

Rxi form the estimates of the source vectorsSm
1 andSm

2 , denoted byŜm
i,1 and Ŝm

i,2, based on its

received signalY n
i and the side information vectorW m

i = (Wi,1, . . . , Wi,m) using the decoding

function

g
(m,n)
i : Yn

i ×Wm
i → Sm

1 × Sm
2 . (5)

Due to the reliable transmission requirement, the reconstruction alphabets are the same as the

source alphabets. In the MAC scenario, there is only one receiver Rx1, which wants to receive

both of the sourcesS1 andS2. In the compound MAC scenario, both receivers want to receive

both sources, while in the interference channel scenario, each receiver wants to receive only its

own transmitter’s source. The two-way channel scenario cannot be obtained as a special case of

the above general model, as the received channel output at each user can be used to generate

channel inputs. On the other hand, a “restricted” two-way channel model, in which the past

channel outputs are only used for decoding, is a special caseof the above compound channel

model withW m
i = Sm

i for i = 1, 2. Based on the decoding requirements, the error probabilityof
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the system,P (m,n)
e will be defined separately for each model. Next, we define the source-channel

rate of the system.

Definition 4.1: We say that source-channel rateb is achievableif, for every ǫ > 0, there exist

positive integersm and n with n/m = b for which we have encodersf (m,n)
1 and f

(m,n)
2 , and

decodersg(m,n)
1 andg

(m,n)
2 with decoder outputs(Ŝm

i,1, Ŝ
m
i,2) = gi(Y

n
i , W m

i ), such thatP (m,n)
e < ǫ.

V. M ULTIPLE ACCESSCHANNEL

We first consider the multiple access channel, in which we areinterested in the reconstruction

at receiverRx1 only. For encodersf (m,n)
i and a decoderg(m,n)

1 , the probability of error for the

MAC is defined as follows:

P (m,n)
e , Pr{(Sm

1 , Sm
2 ) 6= (Ŝm

1,1, Ŝ
m
1,2)}

=
∑

(sm
1 ,sm

2 )∈Sm
1 ×Sm

2

p(sm
1 , sm

2 )P{(ŝm
1,1, ŝ

m
1,2) 6= (sm

1 , sm
2 )|(Sm

1 , Sm
2 ) = (sm

1 , sm
2 )}.

Note that this model is more general than that of [4] as it considers the availability of correlated

side information at the receiver [29]. We first generalize the achievability scheme of [4] to our

model by using the correlation preserving mapping technique of [4], and limiting the source-

channel rateb to 1. Extension to other rates is possible as in Theorem 4 of [4].

Theorem 5.1:Consider arbitrarily correlated sourcesS1 and S2 over the DM MAC with

receiver side informationW1. Source-channel rateb = 1 is achievable if

H(S1|S2, W1) < I(X1; Y1|X2, S2, W1, Q),

H(S2|S1, W1) < I(X2; Y1|X1, S1, W1, Q),

H(S1, S2|U, W1) < I(X1, X2; Y1|U, W1, Q),

and

H(S1, S2|W1) < I(X1, X2; Y1|W1),

for some joint distribution

p(q, s1, s2, w1, x1, x2, y1) = p(q)p(s1, s2, w1)p(x1|q, s1)p(x2|q, s2)p(y1|x1, x2)
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and

U = f(S1) = g(S2)

is the common part ofS1 and S2 in the sense of Gàcs and Körner [26]. We can bound the

cardinality ofQ by min{|X1| · |X2|, |Y|}.

We do not give a proof here as it closely resembles the one in [4]. Note that correlation among

the sources and the side information both condenses the lefthand side of the above inequalities,

and enlarges their right hand side, compared to transmitting independent sources. While the

reduction in entropies on the left hand side is due to Slepian-Wolf source coding, the increase in

the right hand side is mainly due to the possibility of generating correlated channel codewords

at the transmitters. Applying distributed source coding followed by MAC channel coding, while

reducing the redundancy, would also lead to the loss of possible correlation among the channel

codewords. However, whenS1 − W1 − S2 form a Markov chain, that is, the two sources are

independent given the side information at the receiver, thereceiver already has access to the

correlated part of the sources and it is not clear whether additional channel correlation would

help. The following theorem suggests that channel correlation preservation is not necessary in

this case and source-channel separation in the informational sense is optimal.

Theorem 5.2:Consider transmission of arbitrarily correlated sourcesS1 andS2 over the DM

MAC with receiver side informationW1, for which the Markov relationS1 − W1 − S2 holds.

Informational separation is optimal for this setup, and thesource-channel rateb is achievable if

H(S1|W1) < b · I(X1; Y1|X2, Q), (6a)

H(S2|W1) < b · I(X2; Y1|X1, Q), (6b)

and

H(S1|W1) + H(S2|W1) < b · I(X1, X2; Y1|Q), (6c)

for some joint distribution

p(q, x1, x2, y1) = p(q)p(x1|q)p(x2|q)p(y1|x1, x2), (7)

with |Q| ≤ 4.

Conversely, if the source-channel rateb is achievable, then the inequalities in (6) hold with

< replaced by≤ for some joint distribution of the form given in (7).

DRAFT



13

Proof: We start with the proof of the direct part. We use Slepian-Wolf source coding

followed by multiple access channel coding as the achievability scheme; however, the error

probability analysis needs to be outlined carefully since for the rates within the rate region

characterized by the right-hand side of (6) we can achieve arbitrarily small average error

probability rather than themaximum error probability [1]. We briefly outline the code generation

and encoding/decoding steps.

Consider a rate pair(R1, R2) satisfying

H(S1|W1) < R1 < b · I(X1; Y1|X2, Q), (8a)

H(S2|W1) < R2 < b · I(X2; Y1|X1, Q), (8b)

and

H(S1|W1) + H(S2|W1) < R1 + R2 < b · I(X1, X2; Y1|Q). (8c)

Code generation:At transmitterk, k = 1, 2, independently assign everysm
i ∈ Sm

i to one of

the2mRk bins with uniform distribution. Denote the bin index ofsm
k by ik(s

m
k ) ∈ {1, . . . , 2mRk}.

This constitutes the Slepian-Wolf source code.

Fix p(q), p(x1|q) and p(x2|q) such that the conditions in (6) are satisfied. Generateqn by

choosingqi independently fromp(q) for i = 1, . . . , n. For each source bin indexik = 1, . . . , 2mRk

of transmitterk, k = 1, 2, generate a channel codewordxn
k(ik) by choosingxki(ik) independently

from p(xk|qi). This constitutes the MAC code.

Encoders:We use the above separate source and the channel codes for encoding. The source

encoderk finds the bin index ofsm
k using the Slepian-Wolf source code, and forwards it to the

channel encoder. The channel encoder transmits the codeword xn
k corresponding to the source

bin index using the MAC code.

Decoder: We use separate source and channel decoders. Upon receivingyn
1 , the channel

decoder tries to find the indices(i′1, i
′
2) such that the corresponding channel codewords satisfy

(qn, xn
1 (i′1), x

n
2 (i′2)) ∈ T n

[QX1X2Y ]δ
. If one such pair is found, call it(i′1, i

′
2). If no or more than

one such pair is found, declare an error.

Then these indices are provided to the source decoder. Source decoder tries to find̂sm
1,k such

that ik(ŝm
k ) = i′k and(ŝm

k , W m
1 ) ∈ Tm

[SkW1]δ
. If one such pair is found, it is declared as the output.

Otherwise, an error is declared.
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Probability of error analysis:For brevity of the expressions, we defines = (sm
1 , sm

2 ), S =

(Sm
1 , Sm

2 ) and ŝ = (ŝm
1,1, ŝ

m
1,2). The indices corresponding to the sources are denoted byi =

(i1(s
m
1 ), i2(s

m
2 )), and the indices estimated at the channel decoder are denoted by i

′ = (i′1, i
′
2).

The average probability of error can be written as follows:

P (m,n)
e ,

∑

s

P{ŝ 6= s|S = s}p(s)

=
∑

s

[P{ŝ 6= s|i = i
′,S = s}p(i = i

′|S = s) + P{ŝ 6= s|i 6= i
′,S = s}p(i 6= i

′|S = s)] p(s)

≤
∑

s

[P{ŝ 6= s|i = i
′,S = s} + p(i 6= i

′|S = s)] p(s)

=
∑

s

P{ŝ 6= s|i = i
′,S = s}p(s) +

∑

s

p(i 6= i
′|S = s)p(s) (9)

Now, in (9) the first summation is the average error probability given the fact that the receiver

knows the indices correctly. This can be made arbitrarily small with increasingm, which follows

from the Slepian-Wolf theorem. The second term in (9) is the average error probability for the

indices averaged over all source pairs. This can also be written as

∑

s

p(i 6= i
′|S = s)p(s) =

∑

i

p(i 6= i
′, I = i)

=
∑

i

p(i 6= i
′|I = i)p(I = i)

=
1

2m(R1+R2)

∑

i

p(i 6= i
′|I = i) (10)

where (10) follows from the uniform assignment of the bin indices in the creation of the source

code. Note that (10) is the average error probability expression for the MAC code, and we know

that it can also be made arbitrarily small with increasingm andn under the conditions of the

theorem [1].

We note here that forb = 1 the direct part can also be obtained from Theorem 5.1. For this,

we ignore the common part of the sources and choose the channel inputs independent of the

source distributions, that is, we choose a joint distribution of the form

p(q, s1, s2, w1, x1, x2, y1) = p(q)p(s1, s2, w1)p(x1|q)p(x2|q)p(y1|x1, x2).

From the conditional independence of the sources given the receiver side information, both the

left and the right hand sides of the conditions in Theorem 5.1can be simplified to the sufficiency

conditions of Theorem 5.2.
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We next prove the converse. We assumeP (m,n)
e → 0 for a sequence of encodersf (m,n)

i

(i = 1, 2) and decodersg(m,n) as n, m → ∞ with a fixed rateb = n/m. We will use Fano’s

inequality, which states

H(Sm
1 , Sm

2 |Ŝm
1,1, Ŝ

m
1,2) ≤ 1 + mP (m,n)

e log |S1 × S2|,

, mδ(P (m,n)
e ), (11)

whereδ(x) is a non-negative function that approaches zero asx → 0. We also obtain

H(Sm
1 , Sm

2 |Ŝm
1,1, Ŝ

m
1,2) ≥ H(Sm

1 |Ŝm
1,1, Ŝ

m
1,2), (12)

≥ H(Sm
1 |Y n

1 , W m
1 ), (13)

where the first inequality follows from the chain rule of entropy and the nonnegativity of the

entropy function for discrete sources, and the second inequality follows from the data processing

inequality. Then we have, fori = 1, 2,

H(Sm
i |Y n

1 , W m
1 ) ≤ mδ(P (m,n)

e ). (14)

We have

1

n
I(Xn

1 ; Y n
1 |X

n
2 , W m

1 ) ≥
1

n
I(Sm

1 ; Y n
1 |W

m
1 , Xn

2 ), (15)

=
1

n
[H(Sm

1 |W m
1 , Xn

2 ) − H(Sm
1 |Y n

1 , W m
1 , Xn

2 )], (16)

=
1

n
[H(Sm

1 |W m
1 ) − H(Sm

1 |Y n
1 , W m

1 , Xn
2 )], (17)

≥
1

n
[H(Sm

1 |W m
1 ) − H(Sm

1 |Y n
1 , W m

1 )], (18)

≥
1

b

[

H(S1|W1) − δ(P (m,n)
e )

]

, (19)

where(15) follows from the Markov relationSm
1 − Xn

1 − Y n
1 given (Xn

2 , W m
1 ); (17) from the

Markov relationXn
2 −W m

1 −Sm
1 ; (18) from the fact that conditioning reduces entropy; and(19)

from the memoryless source assumption and from (11) which uses Fano’s inequality.
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On the other hand, we also have

I(Xn
1 ; Y n

1 |X
n
2 , W m

1 ) = H(Y n
1 |X

n
2 , W m

1 ) − H(Y n
1 |X

n
1 , Xn

2 , W m
1 ), (20)

= H(Y n
1 |X

n
2 , W m

1 ) −
n

∑

i=1

H(Y1,i|Y
i−1
1 , Xn

1 , Xn
2 , W m

1 ), (21)

= H(Y n
1 |X

n
2 , W m

1 ) −
n

∑

i=1

H(Y1,i|X1i, X2i, W
m
1 ), (22)

≤
n

∑

i=1

H(Y1,i|X2i, W
m
1 ) −

n
∑

i=1

H(Y1,i|X1i, X2i, W
m
1 ), (23)

=
n

∑

i=1

I(X1i; Y1,i|X2i, W
m
1 ), (24)

where (21) follows from the chain rule; (22) from the memoryless channel assumption; and (23)

from the chain rule and the fact that conditioning reduces entropy.

For the joint mutual information we can write the following set of inequalities:

1

n
I(Xn

1 , Xn
2 ; Y n

1 |W
m
1 ) ≥

1

n
I(Sm

1 , Sm
2 ; Y n

1 |W
m
1 ), (25)

=
1

n
[H(Sm

1 , Sm
2 |W m

1 ) − H(Sm
1 , Sm

2 |Y n
1 , W m

1 )], (26)

=
1

n
[H(Sm

1 |W m
1 ) + H(Sm

2 |W m
1 ) − H(Sm

1 , Sm
2 |Y n

1 , W m
1 )], (27)

≥
1

n
[H(Sm

1 |W m
1 ) + H(Sm

2 |W m
1 ) − H(Sm

1 , Sm
2 |Ŝm

1 , Ŝm
2 ), (28)

≥
1

b

[

H(S1|W1) + H(S2|W1) − δ(P (m,n)
e )

]

, (29)

where(25) follows from the Markov relation(Sm
1 , Sm

2 )− (Xn
1 , Xn

2 )−Y n
1 givenW m

1 ; (27) from

the Markov relationSm
2 −W m

1 −Sm
1 ; (28) from the fact that(Sm

1 , Sm
2 )− (Y n

1 , W m
1 )− (Ŝm

1 , Ŝm
2 )

form a Markov chain; and(29) from the memoryless source assumption and from (11) which

uses Fano’s inequality.

By following similar arguments as in (20)-(24) above, we canalso show that

I(Xn
1 , Xn

2 ; Y n
1 |W

m
1 ) ≤

n
∑

i=1

I(X1i, X2i; Y1,i|W
m
1 ). (30)

Now, we introduce a time-sharing random variableQ̄ independent of all other random vari-
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ables. We havēQ = i with probability 1/n, i ∈ {1, 2, . . . , n}. Then we can write

1

n
I(Xn

1 ; Y n
1 |X

n
2 , W m

1 ) ≤
1

n

n
∑

i=1

I(X1i; Y1,i|X2i, W
m
1 ), (31)

=
1

n

n
∑

i=1

I(X1q̄; Yq̄|X2q̄, W
m
1 , Q̄ = i), (32)

= I(X1Q̄; YQ̄|X2Q̄, W m
1 , Q̄), (33)

= I(X1; Y |X2, Q), (34)

whereX1 , X1Q̄, X2 , X2Q̄, Y , YQ̄, andQ , (W m
1 , Q̄). SinceSm

1 and Sm
2 , and therefore

X1i andX2i, are independent givenW m
1 , for q = (wm

1 , i) we have

Pr{X1 = x1, X2 = x2|Q = q} = Pr{X1i = x1, X2i = x2|W
m
1 = wm

1 , Q̄ = i}

= Pr{X1i = x1|W
m
1 = wm

1 , Q̄ = i}Pr{X2i = x2|W
m
1 = wm

1 , Q̄ = i}

= Pr{X1|Q = q} · Pr{X2|Q = q}.

Hence, the probability distribution is of the form given in Theorem 5.2.

On combining the inequalities above we can obtain

H(S1|W1) − δ(P (m,n)
e ) ≤ bI(X1; Y |X2, Q), (35)

H(S2|W1) − δ(P (m,n)
e ) ≤ bI(X2; Y |X1, Q), (36)

and

H(S1|W1) + H(S2|W1) − δ(P (m,n)
e ) ≤ bI(X1, X2; Y |Q). (37)

Finally, taking the limit asm, n → ∞ and lettingP (m,n)
e → 0 leads to the conditions of the

theorem.

To the best of our knowledge, this result constitutes the first example in which the underlying

source structure leads to the optimality of (informational) source-channel separation independent

of the channel. We can also interpret this result as follows:The side information provided to the

receiver satisfies a special Markov chain condition, which enables the optimality of informational

source-channel separation. We can also observe from Theorem 5.2 that the optimal source-

channel rate in this setup is determined by identifying the smallest scaling factorb of the MAC

capacity region such that the point(H(S1|W1), H(S2, W1)) falls into the scaled region. This

answers question (3) affirmatively in this setup.
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A natural question to ask at this point is whether providing some side information to the

receiver can break the optimality of source-channel separation in the case of independent mes-

sages. In the next theorem, we show that this is not the case, and the optimality of informational

separation continues to hold.

Theorem 5.3:Consider independent sourcesS1 andS2 to be transmitted over the DM MAC

with correlated receiver side informationW1. If the joint distribution satisfiesp(s1, s2, w1) =

p(s1)p(s2)p(w1|s1, s2), then the source-channel rateb is achievable if

H(S1|S2, W1) < b · I(X1; Y1|X2, Q), (38)

H(S2|S1, W1) < b · I(X2; Y1|X1, Q), (39)

and

H(S1, S2|W1) < b · I(X1, X2; Y1|Q), (40)

for some input distribution

p(q, x1, x2, y1) = p(q)p(x1|q)p(x2|q)p(y1|x1, x2), (41)

with |Q| ≤ 4.

Conversely, if the source-channel rateb is achievable, then (38)-(40) hold with< replaced by

≤ for some joint distribution of the form given in (41). Informational separation is optimal for

this setup.

Proof: The proof is given in Appendix A.

Next, we illustrate the results of this section with some examples. Consider binary sources

and side information, i.e.,S1 = S2 = W1 = {1, 2}, with the following joint distribution:

PS1S2W1{S1 = 0, S2 = 0, W1 = 0} = PS1S2W1{S1 = 1, S2 = 1, W1 = 1} = 1/3

and

PS1S2W1{S1 = 0, S2 = 1, W1 = 0} = PS1S2W1{S1 = 0, S2 = 1, W1 = 1} = 1/6.

As the underlying multiple access channel, we consider a binary input adder channel, in which

X1 = X2 = {0, 1}, Y = {0, 1, 2} and

Y = X1 + X2.
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H(S1|S2)

H(S2|S1)

H(S1|W1)

H(S2|W1)

(0.46,0.46)

0.5

0.5 1 1.5 1.58

Fig. 2. Capacity region of the binary adder MAC and the sourcecoding rate regions in the example.

Note that, when the side informationW1 is not available at the receiver, this model is the same

as the example considered in [4], which was used to show the suboptimality of separate source

and channel codes over the MAC.

When the receiver does not have access to side informationW1, we can identify the separate

source and channel coding rate regions using the conditional entropies. These regions are shown

in Fig. 2. The minimum source-channel rate is found asb = 1.58/1.5 = 1.05 cupss in the

case of separate source and channel codes. On the other hand,it is easy to see that uncoded

transmission is optimal in this setup which requires a source-channel rate ofb = 1 cupss. Now,

if we consider the availability of the side informationW1 at the receiver, we haveH(S1|W1) =

H(S2|W1) = 0.46. In this case, using Theorem 5.2, the minimum required source-channel rate

is found to beb = 0.92 cupss, which is lower than the one achieved by uncoded transmission.

Theorem 5.3 states that, if the two sources are independent,informational source-channel

separation is optimal even if the receiver has side information given which independence of the

sources no longer holds. Consider, for example, the same binary adder channel in our example.

We now consider two independent binary sources with uniformdistribution, i.e.,P (S1 = 0) =

P (S2 = 0) = 1/2. Assume that the side information at the receiver is now given by W1 =

X1 ⊕ X2, where⊕ denotes the binary xor operation. For these sources and the channel, the
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minimum source-channel rate without the side information at the receiver is found asb = 1.33

cupss. WhenW1 is available at the receiver, the minimum required source-channel rate reduces

to b = 0.67 cupss, which can still be achieved by separate source and channel coding.

Next, we consider the case when the receiver side information is also provided to the trans-

mitters. From the source coding perspective, i.e., when theunderlying MAC is composed of

orthogonal finite capacity links, it is known that having theside information at the transmitters

would not help. However, it is not clear in general, from the source-channel rate perspective,

whether providing the receiver side information to the transmitters would improve the perfor-

mance.

If S1−W1−S2 form a Markov chain, it is easy to see that the results in Theorem 5.2 continue

to hold even whenW1 is provided to the transmitters. Let̃Si = (Si, W1) be the new sources

for which S̃1 − W1 − S̃2 holds. Then, we have the same necessary and sufficient conditions as

before, hence providing the receiver side information to the transmitters would not help in this

setup.

Now, let S1 andS2 be two independent binary random variables, andW1 = S1 ⊕ S2. In this

setup, providing the receiver side informationW1 to the transmitters means that the transmitters

can learn each other’s source, and hence can fully cooperateto transmit both sources. In this

case, source-channel rateb is achievable if

H(S1, S2|W1) < bI(X1, X2; Y1) (42)

for some input distributionp(x1, x2), and if source-channel rateb is achievable then (42) holds

with ≤ for somep(x1, x2). On the other hand, ifW1 is not available at the transmitters, we

can find from Theorem 5.3 that the input distribution in (42) can only bep(x1)p(x2). Thus, in

this setup, providing receiver side information to the transmitters potentially leads to a smaller

source-channel rate as this additional information may enable cooperation over the MAC, which

is not possible without the side information. In our exampleof independent binary sources, the

total transmission rate that can be achieved by total cooperation of the transmitters is1.58 bits

per channel use. Hence, the minimum source-channel rate that can be achieved when the side

informationW1 is available at both the transmitters and the receiver is found to be0.63 cupss.

This is lower than0.67 cupps that can be achieved when the side information is only available

at the receiver.
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We conclude that, as opposed to the pure lossless source coding scenario, having side informa-

tion at the transmitters might improve the achievable source-channel rate in multiuser systems.

VI. COMPOUND MAC WITH CORRELATED SOURCES

Next, we consider a compound multiple access channel, in which two transmitters wish

to transmit their correlated sources reliably to two receivers simultaneously [29]. The error

probability of this system is given as follows:

P (m,n)
e , Pr







⋃

k=1,2

(Sm
1 , Sm

2 ) 6= (Ŝm
k,1, Ŝ

m
k,2)







=
∑

(sm
1 ,sm

2 )∈Sm
1 ×Sm

2

p(sm
1 , sm

2 )P







⋃

k=1,2

(ŝm
k,1, ŝ

m
k,2) 6= (sm

1 , sm
2 )

∣

∣

∣(Sm
1 , Sm

2 ) = (sm
1 , sm

2 )







.

The capacity region of the compound MAC is shown to be the intersection of the two MAC

capacity regions in [27] in the case of independent sources and no receiver side information.

However, necessary and sufficient conditions for lossless transmission in the case of correlated

sources are not known in general. Note that, when there is side information at the receivers,

finding the achievable source-channel rate for the compoundMAC is not a simple extension

of the capacity region in the case of independent sources. Due to different side information at

the receivers, each transmitter should send a different part of its source to different receivers.

Hence, in this case we can consider the compound MAC both as a combination of two MACs,

and as a combination of two broadcast channels. We remark here that even in the case of single

source broadcasting with receiver side information, informational separation is not optimal, but

the optimal source-channel rate can be achieved by operational separation as is shown in [6].

We first state an achievability result for rateb = 1, which extends the achievability scheme

proposed in [4] to the compound MAC with correlated side information. The extension to other

rates is possible by considering blocks of sources and channels as superletters similar to Theorem

4 in [4].

Theorem 6.1:Consider lossless transmission of arbitrarily correlatedsources(S1, S2) over a

DM compound MAC with side information(W1, W2) at the receivers as in Fig. 1. Source-channel
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rate1 is achievable if, fork = 1, 2,

H(S1|S2, Wk) < I(X1; Yk|X2, S2, Wk, Q),

H(S2|S1, Wk) < I(X2; Yk|X1, S1, Wk, Q),

H(S1, S2|U, Wk) < I(X1, X2; Yk|U, Wk, Q),

and

H(S1, S2|Wk) < I(X1, X2; Yk|Wk),

for some joint distribution of the form

p(q, s1, s2, w1, w2, x1, x2, y1, y2) = p(q)p(s1, s2, w1, w2)p(x1|q, s1)p(x2|q, s2)p(y1, y2|x1, x2)

and

U = f(S1) = g(S2)

is the common part ofS1 andS2 in the sense of Gàcs and Körner.

Proof: The proof follows by using the correlation preserving mapping scheme of [4], and

is thus omitted for the sake of brevity.

In the next theorem, we provide sufficient conditions for theachievability of a source-channel

rate b. The achievability scheme is based on operational separation where the source and the

channel codebooks are generated independently of each other. In particular, the typical source

outputs are matched to the channel inputs without any explicit binning at the encoders. At the

receiver, a joint source-channel decoder is used, which canbe considered as a concatenation

of a list decoder as the channel decoder, and a source decoderthat searches among the list for

the source codeword that is also jointly typical with the side information. However, there are

no explicit source and channel codes that can be independently used either for compressing the

sources or for independent data transmission over the underlying compound MAC. An alternative

coding scheme composed of explicit source and channel coders that interact with each other is

proposed in [18]. However, the channel code in this latter scheme is not the channel code for

the underlying multiuser channel either.

Theorem 6.2:Consider lossless transmission of arbitrarily correlatedsourcesS1 andS2 over

a DM compound MAC with side informationW1 andW2 at the receivers. Source-channel rate
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b is achievable if, fork = 1, 2,

H(S1|S2, Wk) < bI(X1; Yk|X2, Q), (43)

H(S2|S1, Wk) < bI(X2; Yk|X1, Q), (44)

and

H(S1, S2|Wk) < bI(X1, X2; Yk|Q), (45)

for some|Q| ≤ 4 and input distribution of the formp(q, x1, x2) = p(q) p(x1|q)p(x2|q).

Remark 6.1:The achievability part of Theorem 6.2 can be obtained from the achievability

of Theorem 6.1. Here, we constrain the channel input distributions to be independent of the

source distributions as opposed to the conditional distribution used in Theorem 6.1. We provide

the proof of the achievability of Theorem 6.2 below to illustrate the nature of the operational

separation scheme that is used.

Proof: Fix δk > 0 andγk > 0 for k = 1, 2, andPX1 andPX2 . For b = n/m andk = 1, 2,

at transmitterk, we generateMk = 2m[H(Sk)+ǫ/2] i.i.d. length-m source codewords and i.i.d.

length-n channel codewords using probability distributionsPSk
and PXk

, respectively. These

codewords are indexed and revealed to the receivers as well,and are denoted bysm
k (i) andxn

k(i)

for 1 ≤ i ≤ Mk.

Encoder:Each source outcome is directly mapped to a channel codewordas follows: Given

a source outcomeSm
k at transmitterm, we find the smallestik such thatSm

k = sm
k (ik), and

transmit the codewordxn
k(ik). An error occurs if no suchik is found at either of the transmitters

k = 1, 2.

Decoder:At receiverk, we find the unique pair(i∗1, i
∗
2) that simultaneously satisfies

(xn
1 (i∗1), x

n
2 (i∗2), Y

n
k ) ∈ T

(n)
[X1X2Y ]δk

,

and

(sm
1 (i∗1), s

m
2 (i∗2), W

m
k ) ∈ T

(m)
[S1S2Wk]γk

,

whereT
(n)
[X]δ

is the set of weaklyδ-typical sequences. An error is declared if the(i∗1, i
∗
2) pair is

not uniquely determined.
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Probability of error: We define the following events:

Ek
1 = {Sm

k 6= sm
k (i), ∀i}

Ek
2 = {(sm

1 (i1), s
m
2 (i2), W

m
k ) /∈ T

(m)
[S1S2Wk]γk

}

Ek
3 = {(xn

1 (i1), x
n
2 (i2), Y

n
k ) /∈ T

(n)
[X1X2Y ]δk

}

and

Ek
4 (j1, j2) = {(sm

1 (j1), s
m
2 (j2), W

m
k ) ∈ T

(m)
[S1S2Wk]γk

and (xn
1 (j1), x

n
2 (j2), Y

n
k ) ∈ T

(n)
[X1X2Y ]δk

}

Here, E1 denotes the error event in which either of the encoders failsto find a unique

source codeword in its codebook that corresponds to its current source outcome. When such

a codeword can be found,Ek
2 denotes the error event in which the sourcesSm

1 andSm
2 and the

side informationWk at receiverk are not jointly typical. On the other hand,Ek
3 denotes the

error event in which channel codewords that match the current source realizations are not jointly

typical with the channel output at receiverk. Finally Ek
4 (j1, j2) is the event that the source

codewords corresponding to the indicesj1 and j2 are jointly typical with the side information

Wk and simultaneously that the channel codewords corresponding to the indicesj1 and j2 are

jointly typical with the channel outputYk.

DefineP
(m,n)
k , Pr{(Sm

1 , Sm
2 ) 6= (Ŝm

k,1, Ŝ
m
k,2)}. ThenP (m,n)

e ≤
∑

k=1,2 P
(m,n)
k . Again, from the

union bound, we have

P
(m,n)
k ≤Pr{Ek

1} + Pr{Ek
2} + Pr{Ek

3} +
∑

j1 6=i1,
j2=i2

Ek
4 (j1, j2) +

∑

j1=i1,
j2 6=i2

Ek
4 (j1, j2) +

∑

j1 6=i1,
j2 6=i2

Ek
4 (j1, j2),

(46)

wherei1 and i2 are the correct indices. We have

Ek
4 (j1, j2) = Pr

{

(sm
1 (j1), s

m
2 (j2), W

m
k ) ∈ T

(m)
[S1,S2,Wk]γk

}

Pr
{

(xn
1 (j1), x

n
2 (j2), Y

n
k ) ∈ T

(n)
[X1,X2,Yk]δk

}

.

(47)

In [6] it is shown that, for anyλ > 0 and sufficiently largem,

Pr{Ek
1} = (1 − Pr{Sm

k = sm
k (1)})Mk

≤ exp−2−n[H(Sk)+6λ]Mk

= exp−2n[ ǫ
2
−6λ]

. (48)
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We chooseλ < ǫ
12

, and obtainPr{E1} → 0 asm → ∞.

Similarly, we can also prove thatPr(Ei(k)) → 0 for i = 2, 3 and k = 1, 2 as m, n → ∞

using standard techniques. We can also obtain
∑

j1 6=i1,
j2=i2

Pr
{

(sm
1 (j1), s

m
2 (j2), W

m
k ) ∈ T

(m)
[S1,S2,Wk]γk

}

Pr
{

(xn
1 (j1), x

n
2 (j2), Y

n
k ) ∈ T

(n)
[X1,X2,Yk]δk

}

≤ 2m[H(S1)+ ǫ
2
]−m[I(S1;S2,Wk)−λ]−n[I(X1;Yk|X2)−λ] (49)

= 2−m[H(S1|S2,Wk)−bI(X1;Yk|X2)−(b+1)λ− ǫ
2
]

= 2−m[ ǫ
2
−(b+1)λ] (50)

where in (49) we used (1) and (2); and (50) holds if the conditions in the theorem hold.

A similar bound can be found for the second summation in (46).For the third one, we have

the following bound.
∑

j1 6=i1,
j2 6=i2

Pr
{

(sm
1 (j1), s

m
2 (j2), W

m
k ) ∈ T

(m)
[S1,S2,Wk]γk

}

Pr
{

(xn
1 (j1), x

n
2 (j2), Y

n
k ) ∈ T

(n)
[X1,X2,Y ]δk

}

≤ 2m[H(S1)+ǫ/2]+m[H(S2)+ǫ/2]2−m[I(S1;S2,Wk)+I(S2;S1,Wk)−I(S1;S2|Wk)]−λ]2−n[I(X1,X2;Yk)−λ] (51)

≤ 2−m[H(S1|S2,Wk)+H(S2|S1,Wk)−bI(X1,X2;Yk)−(b+1)λ−ǫ]

= 2−m[ǫ−(b+1)λ], (52)

where (51) follows from (1) and (3); and (52) holds if the conditions in the theorem hold.

Choosingλ < min
{

ǫ
12

, ǫ
2(b+1)

}

, we can make sure that all terms of the summation in (46) also

vanish asm, n → ∞. Any rate pair in the convex hull can be achieved by time sharing, hence

the time-sharing random variableQ. The cardinality bound onQ follows from the classical

arguments.

We next prove that the conditions in Theorem 6.2 are also necessary to achieve a source-

channel rate ofb for some special settings, hence, answering question (2) affirmatively for these

cases. We first consider the case in whichS1 is independent of(S2, W1) andS2 is independent

of (S1, W2) . This might model a scenario in whichRx1 (Rx2) andTx2 (Tx1) are located close

to each other, thus having correlated observations, while the two transmitters are far away from

each other (see Fig. 3).

Theorem 6.3:Consider lossless transmission of arbitrarily correlatedsourcesS1 andS2 over

a DM compound MAC with side informationW1 andW2, whereS1 is independent of(S2, W1)
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Fig. 3. Compound multiple access channel in which the transmitter 1 (2) and receiver 2 (1) are located close to each other,and

hence have correlated observations, independent of the other pair, i.e.,S1 is independent of(S2, W1) andS2 is independent of

(S1, W2) .

and S2 is independent of(S1, W2) . Separation (in the operational sense) is optimal for this

setup, and the source-channel rateb is achievable if, for(k, m) ∈ {(1, 2), (2, 1)},

H(Sk) < bI(Xk; Yk|Xm, Q), (53)

H(Sm|Wk) < bI(Xm; Yk|Xk, Q), (54)

and

H(Sk) + H(Sm|Wk) < bI(Xk, Xm; Yk|Q), (55)

for some|Q| ≤ 4 and input distribution of the form

p(q, x1, x2) = p(q)p(x1|q)p(x2|q). (56)

Conversely, if source-channel rateb is achievable, then (53)-(55) hold with< replaced by≤

for an input probability distribution of the form given in (56).

Proof: Achievability follows from Theorem 6.2, and the converse proof is given in Appendix

B.

Next, we consider the case in which there is no multiple access interference at the receivers

(see Fig. 4). We letYk = (Y1,k, Y2,k) k = 1, 2, where the memoryless channel is characterized

by

p(y1,1, y2,1, y1,2, y2,2|x1, x2) = p(y1,1, y1,2|x1)p(y2,1, y2,2|x2). (57)

On the other hand, we allow arbitrary correlation among the sources and the side information.

However, since there is no multiple access interference, using the source correlation to create
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Fig. 4. Compound multiple access channel with correlated sources and correlated side information with no multiple access

interference.

correlated channel codewords does not enlarge the rate region of the channel. We also remark

that this model is not equivalent to two independent broadcast channels with side information.

The two encoders interact with each other through the correlation among their sources.

Theorem 6.4:Consider lossless transmission of arbitrarily correlatedsourcesS1 andS2 over

a DM compound MAC with no multiple access interference characterized by (57) and receiver

side informationW1 and W2 (see Fig. 4). Separation (in the operational sense) is optimal for

this setup, and the source-channel rateb is achievable if, for(k, m) = {(1, 2), (2, 1)}

H(Sk|Sm, Wk) < bI(Xk; Yk,k), (58)

H(Sm|Sk, Wk) < bI(Xm; Ym,k), (59)

and

H(Sk, Sm|Wk) < b[I(Xk; Yk,k) + I(Xm; Ym,k)], (60)

for an input distribution of the form

p(q, x1, x2) = p(q)p(x1|q)p(x2|q). (61)

Conversely, if the source-channel rateb is achievable, then (53)-(55) hold with< replaced by

≤ for an input probability distribution of the form given in (56).

Proof: The achievability follows from Theorem 6.2 by lettingQ be constant and taking

into consideration the characteristics of the channel, where (X1, Y1,1, Y1,2) is independent of
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(X2, Y2,1, Y2,2). The converse can be proven similarly to Theorem 6.3, and will be omitted for

the sake of brevity.

Note that the model considered in Theorem 6.4 is a generalization of the model in [30] (which

is a special case of the more general network studied in [7]) to more than one receiver. Theorem

6.4 considers correlated receiver side information which can be incorporated into the model

of [30] by considering an additional transmitter sending this side information over an infinite

capacity link. In this case, using [30], we observe that informational source-channel separation

is optimal. However, Theorem 6.4 argues that this is no longer true when the number of sink

nodes is greater than one even when there is no receiver side information.

The model in Theorem 6.4 is also considered in [31] in the special case of no side information

at the receivers. In the achievability scheme of [31], transmitters first randomly bin their correlated

sources, and then match the bins to channel codewords. Theorem 6.4 shows that we can achieve

the same optimal performance without explicit binning evenin the case of correlated receiver

side information.

In both Theorem 6.3 and Theorem 6.4, we provide the optimal source-channel matching

conditions for lossless transmission. While general matching conditions are not known for

compound MACs, the reason we are able to resolve the problem in these two cases is the

lack of multiple access interference from users with correlated sources. In the first setup the

two sources are independent, hence it is not possible to generate correlated channel inputs,

while in the second setup, there is no multiple access interference, and thus there is no need

to generate correlated channel inputs. We note here that theoptimal source-channel rate in

both cases is achieved by operational separation answeringboth question (2) and question (4)

affirmatively. The supoptimality of informational separation in these models follows from [6],

since the broadcast channel model studied in [6] is a specialcase of the compound MAC model

we consider. We refer to the example provided in [31] for the suboptimality of informational

separation for the setup of Theorem 6.4 even without side information at the receives.

Finally, we consider the special case in which the two receivers share common side infor-

mation, i.e.,W1 = W2 = W , in which caseS1 − W − S2 form a Markov chain. For example

this models the scenario in which the two receivers are closeto each other, hence they have the

same side information. The following theorem proves the optimality of informational separation

under these conditions.

DRAFT



29

Theorem 6.5:Consider lossless transmission of correlated sourcesS1 and S2 over a DM

compound MAC with common receiver side informationW1 = W2 = W satisfyingS1−W −S2.

Separation (in the informational sense) is optimal in this setup, and the source-channel rateb is

achievable if, fork = 1 and2,

H(S1|W ) < b · I(X1; Yk|X2, Q), (62)

H(S2|W ) < b · I(X2; Yk|X1, Q),

and

H(S1|W ) + H(S2|W ) < b · I(X1, X2; Yk|Q),

for some joint distributionp(q, x1, x2, y) = p(q)p(x1|q) p(x2|q)p(y|x1, x2), with |Q| ≤ 4.

Conversely, if the source-channel rateb is achievable, then (62)-(63) hold with< replaced by

≤ for an input probability distribution of the form given above.

Proof: The achievability follows from informational source-channel separation, i.e, Slepian-

Wolf compression conditioned on the receiver side information followed by an optimal compound

MAC coding. The proof of the converse follows similarly to the proof of Theorem 5.2, and is

omitted for brevity.

VII. I NTERFERENCE CHANNEL WITH CORRELATED SOURCES

In this section, we consider the interference channel (IC) with correlated sources and side

information. In the IC each transmitter wishes to communicate only with its corresponding

receiver, while the two simultaneous transmissions interfere with each other. Even when the

sources and the side information are all independent, the capacity region of the IC is in general

not known. The best achievable scheme is given in [32]. The capacity region can be characterized

in the strong interference case [36], [10], where it coincides with the capacity region of the

compound multiple access channel, i.e., it is optimal for the receivers to decode both messages.

The interference channel has gained recent interest due to its practical value in cellular and

cognitive radio systems. See [33] - [35] and references therein for recent results relating to the

capacity region of various interference channel scenarios.
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For encodersf (m,n)
i and decodersg(m,n)

i , the probability of error for the interference channel

is given as

P (m,n)
e , Pr







⋃

k=1,2

Sm
k 6= Ŝm

k,k







=
∑

(sm
1 ,sm

2 )∈Sm
1 ×Sm

2

p(sm
1 , sm

2 )P







⋃

k=1,2

ŝm
k,k 6= sm

k

∣

∣

∣(Sm
1 , Sm

2 ) = (sm
1 , sm

2 )







.

In the case of correlated sources and receiver side information, sufficient conditions for the

compound MAC model given in Theorem 6.1 and Theorem 6.2 serveas sufficient conditions for

the IC as well, since we can constrain both receivers to obtain lossless reconstruction of both

sources. Our goal here is to characterize the conditions under which we can provide a converse

and achieve either informational or operational separation similar to the results of Section VI. In

order to extend the necessary conditions of Theorem 6.3 and Theorem 6.5 to ICs, we will define

the ‘strong source-channel interference’ conditions. Note that the interference channel version

of Theorem 6.4 is trivial since the two transmissions do not interfere with each other.

The regular strong interference conditions given in [36] correspond to the case in which, for all

input distributions at transmitterTx1, the rate of information flow to receiverRx2 is higher than

the information flow to the intended receiverRx1. A similar condition holds for transmitterTx2

as well. Hence there is no rate loss if both receivers decode the messages of both transmitters.

Consequently, under strong interference conditions, the capacity region of the IC is equivalent to

the capacity region of the compound MAC. However, in the joint source-channel coding scenario,

the receivers have access to correlated side information. Thus while calculating the total rate

of information flow to a particular receiver, we should not only consider the information flow

through the channel, but also the mutual information that already exists between the source and

the receiver side information.

We first focus on the scenario of Theorem 6.3 in which the source S1 is independent of

(S2, W1) andS2 is independent of(S2, W1).

Definition 7.1: For the interference channel in whichS1 is independent of(S2, W1) and S2

is independent of(S2, W1), we say that thestrong source-channel interference conditionsare

satisfied for a source-channel rateb if,

b · I(X1; Y1|X2) ≤ b · I(X1; Y2|X2) + I(S1; W2), (63)
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and

b · I(X2; Y2|X1) ≤ b · I(X2; Y1|X1) + I(S2; W1), (64)

for all distributions of the formp(w1, w2, s1, s2, x1, x2) = p(w1, w2, s1, s2)p(x1|s1)p(x2|s2).

For an IC satisfying these conditions, we next prove the following theorem.

Theorem 7.1:Consider lossless transmission ofS1 andS2 over a DM IC with side information

W1 andW2, whereS1 is independent of(S2, W1) andS2 is independent of(S2, W1). Assuming

that the strong source-channel interference conditions ofDefinition 7.1 are satisfied forb,

separation (in the informational sense) is optimal. The source-channel rateb is achievable if, the

conditions (43)-(45) in Theorem 6.2 hold. Conversely, if rate b is achievable, then the conditions

in Theorem 6.2 hold with< replaced by≤.

Before we proceed with the proof of the theorem, we first provethe following lemma.

Lemma 7.2:If (S1, W2) is independent of(S2, W1) and the strong source-channel interference

conditions (63)-(64) hold, then we have

I(Xn
2 ; Y n

2 |X
n
1 ) ≤ I(Xn

2 ; Y n
1 |X

n
1 ) + I(Sm

2 ; W m
1 ), (65)

and

I(Xn
1 ; Y n

1 |X
n
2 ) ≤ I(Xn

1 ; Y n
2 |X

n
2 ) + I(Sm

1 ; W m
2 ), (66)

for all m andn satisfyingn/m = b.

Proof: To prove the lemma, we follow the techniques in [10]. Condition (64) implies

I(X2; Y2|X1, U) − I(X2; Y1|X1, U) ≤
1

b
I(S2; W1) (67)

for all U satisfyingU − (X1, X2) − (Y1, Y2).

Then as in [10], we can obtain

I(Xn
2 ; Y n

2 |X
n
1 ) − I(Xn

2 ; Y n
1 |X

n
1 ) =I(X2n; Y2n|X

n
1 , Y n−1

2 ) − I(X2n; Y1n|X
n
1 , Y n−1

2 )

+ I(Xn−1
2 ; Y n−1

2 |Xn
1 , Y1n) − I(Xn−1

2 ; Y n−1
1 |Xn

1 , Y1n)

=I(X2n; Y2n|X1n) − I(X2n; Y1n|X1n)

+ I(Xn−1
2 ; Y n−1

2 |Xn−1
1 ) − I(Xn−1

2 ; Y n−1
1 |Xn−1

1 )

=
n

∑

i=1

[I(X2i; Y2i|X1i) − I(X2i; Y1i|X1i)].
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Using the hypothesis (64) of the theorem, we obtain

I(Xn
2 ; Y n

2 |X
n
1 ) − I(Xn

2 ; Y n
1 |X

n
1 ) ≤

n

b
I(S2; W1)

= I(Sm
2 ; W m

1 ).

Eqn. (66) follows similarly.

Proof: (of Theorem 7.1)Achievability follows by having each receiver decode bothS1 and

S2, and then using Theorem 6.1. We next prove the converse. From(95)-(98), we have

1

n
I(Xn

1 ; Y n
1 |X

n
2 ) ≥

1

b

[

H(S1) − δ(P (m,n)
e )

]

. (68)

We can also obtain

1

n
I(Xn

1 ; Y n
2 |X

n
2 ) ≥

1

n
[I(Xn

1 ; Y n
1 |X

n
2 ) − I(Sm

1 ; W m
2 )], (69)

=
1

b
[H(S1) − δ(P (m,n)

e )] −
1

n
I(Sm

1 ; W m
2 ), (70)

=
1

b
[H(S1|W2) − δ(P (m,n)

e )], (71)

in which (69) follows from (66), and (70) from (68).

Finally for the joint mutual information, we have

1

n
I(Xn

1 , Xn
2 ; Y n

1 ) =
1

n
[I(Xn

1 ; Y n
1 ) + I(Xn

2 ; Y n
1 |X

n
1 )],

≥
1

n
[I(Sm

1 ; Y n
1 ) + I(Xn

2 ; Y n
2 |X

n
1 ) − I(Sm

2 ; W m
1 )], (72)

≥
1

n
[I(Sm

1 ; Y n
1 ) + I(Sm

2 ; Y n
2 |X

n
1 ) − I(Sm

2 ; W m
1 )], (73)

=
1

n
[H(Sm

1 ) − H(Sm
1 |Y n

1 ) + H(Sm
2 |Xn

1 ) − H(Sm
2 |Y n

2 , Xn
1 )

+ H(Sm
2 |W m

1 ) − H(Sm
2 )],

≥
1

n
[H(Sm

1 ) − H(Sm
1 |Y n

1 ) − H(Sm
2 |Y n

2 ) + H(Sm
2 |W m

1 )], (74)

=
1

n
[H(Sm

1 ) − H(Sm
1 |Y n

1 , W m
1 ) − H(Sm

2 |Y n
2 , W m

2 ) + H(Sm
2 |W m

1 )], (75)

≥
1

b
[H(S1) + H(S2|W1) − 2δ(P (m,n)

e )], (76)

for any ǫ > 0 and large enoughm and n, where (72) follows from the data processing

inequality and (65);(73) follows from the data processing inequality sinceSm
2 − Xn

2 − Y n
2

form a Markov chain givenXn
1 ; (74) follows from the independence ofXn

1 andSm
2 and the fact
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Fig. 5. The two-way channel model with correlated sources.

that conditioning reduces entropy;(75) follows from the fact thatS1 is independent of(S2, W1)

and S2 is independent of(S2, W1); and (76) follows from Fano’s inequality. The rest of the

proof closely resembles that of Theorem 6.3.

Next, we consider the IC version of the case in Theorem 6.5, inwhich the two receivers

have access to the same side informationW and with this side information the sources are

independent. While we still have correlation between the sources and the common receiver side

information, the amount of mutual information arising fromthis correlation is equivalent at both

receivers sinceW1 = W2. This suggests that the usual strong interference channel conditions

suffice to obtain the converse result. We have the following theorem for this case.

Theorem 7.3:Consider lossless transmission of correlated sourcesS1 andS2 over the strong

IC with common receiver side informationW1 = W2 = W satisfyingS1 − W − S2. Separation

(in the informational sense) is optimal in this setup, and the source-channel rateb is achievable

if and only if the conditions in Theorem 6.5 hold.

Proof: The proof follows from arguments similar to those in the proof of Theorem 6.5 and

results in [28], where we incorporate the strong interference conditions.

VIII. T WO-WAY CHANNEL WITH CORRELATED SOURCES

In this section, we consider the two-way channel scenario with correlated source sequences

(see Fig. 5). The two-way channel model was introduced by Shannon [3] who gave inner and

outer bounds on the capacity region. Shannon showed that hisinner bound is indeed the capacity

region of the “restricted” two-way channel, in which the channel inputs of the users depend only

on the messages (not on the previous channel outputs). Several improved outer bounds are given

in [37]-[39] using the “dependence-balance bounds” proposed by Hekstra and Willems.
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In [3] Shannon also considered the case of correlated sources, and showed by an example that

by exploiting the correlation structure of the sources we might achieve rate pairs given by the

outer bound. Here we consider arbitrarily correlated sources and provide an achievability result

using the coding scheme for the compound MAC model in SectionVI. It is possible to extend

the results to the scenario where each user also has side information correlated with the sources.

In the general two-way channel model, the encoders observe the past channel outputs and

hence they can use these observations for encoding future channel input symbols. The encoding

function at useri at time instantj is given by

fi,j : Sm
i × Yj−1

i → Xi, (77)

for i = 1, 2. The probability of error for the two-way channel is given as

P (m,n)
e , Pr
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Note that, if we only consider restricted encoders at the users, than the system model is equivalent

to the compound MAC model of Fig. 1 withW m
1 = Sm

1 andW m
2 = Sm

2 . From Theorem 6.1 we

obtain the following corollary.

Corollary 8.1: In lossless transmission of arbitrarily correlated sources (S1, S2) over a DM

two-way channel, the source-channel rateb = 1 is achievable if

H(S1|S2) < I(X1; Y2|X2, S2, Q) and

H(S2|S1) < I(X2; Y1|X1, S1, Q),

for some joint distribution of the form

p(q, s1, s2, x1, x2, y1, y2) = p(q)p(s1, s2)p(x1|q, s1)p(x2|q, s2)p(y1, y2|x1, x2).

Note that here we use the source correlation rather than the correlation that can be created

through the inherent feedback available in the two-way channel. This correlation among the

channel codewords potentially helps us achieve source-channel rates that cannot be achieved

by independent inputs. Shannon’s outer bound can also be extended to the case of correlated

sources to obtain a lower bound on the achievable source-channel rate as follows.
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Proposition 8.2: In lossless transmission of arbitrarily correlated sources (S1, S2) over a DM

two-way channel, if the source-channel rateb is achievable, then

H(S1|S2) < bI(X1; Y2|X2) and

H(S2|S1) < bI(X2; Y1|X1),

for some joint distribution of the form

p(s1, s2, x1, x2, y1, y2) = p(s1, s2)p(x1, x2)p(y1, y2|x1, x2).

Proof: We have

H(Sm
1 |Sm

2 ) = I(Sm
1 ; Y n

2 |S
m
2 ) + H(Sm

1 |Sm
2 , Y n

2 ) (78)

≤ I(Sm
1 ; Y n

2 |S
m
2 ) + mδ(P (m,n)

e ) (79)

= H(Y n
2 |S

m
2 ) − H(Y n

2 |S
m
1 , Sm

2 ) + mδ(P (m,n)
e ) (80)

=
n

∑

i=1

H(Y2i|S
m
2 , Y i−1

2 ) − H(Y2i|S
m
1 , Sm

2 , Y i−1
2 ) + mδ(P (m,n)

e ) (81)

≤
n

∑

i=1

H(Y2i|S
m
2 , Y i−1

2 , X i
2) − H(Y2i|S

m
1 , Sm

2 , Y i−1
2 , Y i−1

1 , X2i) + mδ(P (m,n)
e ) (82)

≤
n

∑

i=1

H(Y2i|X2i) − H(Y2i|S
m
1 , Sm

2 , Y i−1
2 , Y i−1

1 , X1i, X2i) + mδ(P (m,n)
e ) (83)

≤
n

∑

i=1

H(Y2i|X2i) − H(Y2i|X1i, X2i) + mδ(P (m,n)
e ) (84)

≤
n

∑

i=1

I(X1i; Y2i|X2i) + mδ(P (m,n)
e ) (85)

where (79) follows from Fano’s inequality; (82) follows since Xk
2 is a deterministic function

of (Sm
2 , Y i−1

2 ) and the fact that conditioning reduces entropy; (83) follows similarly asXk
1 is

a deterministic function of(Sm
1 , Y i−1

1 ) and the fact that conditioning reduces entropy; and (84)

follows sinceY2i − (X1i, X2i) − (Sm
1 , Sm

2 , Y i−1
2 , Y i−1

1 ) form a Markov chain.

Similarly, we can show that

H(Sm
2 |Sm

1 ) ≤
n

∑

i=1

I(X2i; Y1i|X1i) + mδ(P (m,n)
e ). (86)

From convexity arguments and lettingm, n → ∞, we obtain

H(S1|S2) ≤ bI(X1; Y2|X2), (87)

H(S2|S1) ≤ bI(X2; Y1|X1), (88)
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for some joint distributionp(x1, x2).

Remark 8.1:Note that the lower bound of Proposition 8.2 allows all possible joint distributions

for the channel inputs. This lets us express the lower bound in a separable form, since the source

correlation becomes useless to introduce any additional structure to the transmitted channel

codewords. In general, not all joint channel input distributions can be achieved at the two users,

and tighter bounds can be obtained by limiting the set of possible joint distributions as in [37]-

[39].

However, if the existing source correlation allows the users to generate the optimal joint

channel input distribution, then the achievable region given in Corollary 8.1 might meet the

upper bound without the need to exploit the feedback to generate further correlation. This has

been illustrated by an example in [3]. Shannon considered correlated binary sourcesS1 andS2

such that

PS1S2(S1 = 0, S2 = 1) = PS1S2(S1 = 1, S2 = 0) = 0.275

and

PS1S2(S1 = 1, S2 = 1) = 0.45,

and a binary multiplier two-way channel, in which

X1 = X2 = Y1 = Y2 = {0, 1}

and

Y1 = Y2 = X1 · X2.

Using Proposition 8.2, we can set a lower bound ofb = 1 on the achievable source-channel rate.

On the other hand, the source-channel rate of1 can be achieved simply by uncoded transmission.

Hence, in this example, the correlated source structure enables the transmitter to achieve the

optimal joint distribution for the channel inputs without exploiting the inherent feedback in the

two-way channel. Note that the Shannon outer bound is not achievable in the case of independent

sources in a binary multiplier two-way channel [37], and theachievable rates can be improved

by using channel inputs dependent on the previous channel outputs.
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IX. CONCLUSIONS

We have considered source and channel coding over multiuserchannels with correlated receiver

side information. Due to the lack of a general source-channel separation theorem for multiuser

channels, optimal performance in general requires joint source-channel coding. Given the dif-

ficulty of finding the optimal source-channel rate in a general setting, we have analyzed some

fundamental building-blocks of the general setting in terms of separation optimality. Specifically,

we have characterized the necessary and sufficient conditions for lossless transmission over

various fundamental multiuser channels, such as multiple access, compound multiple access,

interference and two-way channels for certain source-channel distributions and structures. In

particular, we have considered transmitting correlated sources over the MAC with receiver side

information given which the sources are independent, and transmitting independent sources over

the MAC with receiver side information given which the sources are correlated. For the compound

MAC, we have provided an achievability result, which has been shown to be tight i) when each

source is independent of the other source and one of the side information sequences, ii) when

the sources and the side information are arbitrarily correlated but there is no multiple access

interference at the receivers, iii) when the sources are correlated and the receivers have access to

the same side information given which the two sources are independent. We have then showed

that for cases (i) and (iii), the conditions provided for thecompound MAC are also necessary

for interference channels under some strong source-channel conditions. We have also provided

a lower bound on the achievable source-channel rate for the two-way channel.

For the cases analyzed in this paper, we have proven the optimality of designing source and

channel codes that are statistically independent of each other, hence resulting in a modular system

design without losing the end-to-end optimality. We have shown that, in some scenarios, this

modularity can be different from the classical Shannon typeseparation, called the ‘informational

separation’, in which comparison of the source coding rate region and the channel capacity

region provides the necessary and sufficient conditions forthe achievability of a source-channel

rate. In other words, informational separation requires the separate codes used at the source

and the channel coders to be the optimal source and the channel codes, respectively, for the

underlying model. However, following [6], we have shown here for a number of multiuser

systems that a more general notion of ‘operational separation’ can hold even in cases for which
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informational separation fails to achieve the optimal source-channel rate. Operational separation

requires statistically independent source and channel codes which are not necessarily the optimal

codes for the underlying sources or the channel. In the case of operational separation, comparison

of two rate regions (not necessarily the compression rate and the capacity regions) that depend

only on the source and channel distributions, respectively, provides the necessary and sufficient

conditions for lossless transmission of the sources. Theseresults help us to obtain insights into

source and channel coding for larger multiuser networks, and potentially would lead to improved

design principles for practical implementations.

APPENDIX A

PROOF OFTHEOREM 5.3

Proof: The achievability again follows from separate source and channel coding. We first

use Slepian-Wolf compression of the sources conditioned onthe receiver side information, then

transmit the compressed messages using an optimal multipleaccess channel code.

An alternative approach for the achievability is possible by consideringW1 as the output of a

parallel channel fromS1, S2 to the receiver. Note that this parallel channel is usedm times for

n uses of the main channel. The achievable rates are then obtained following the arguments for

the standard MAC:

mH(S1) < I(Sm
1 , Xn

1 ; Y n
1 , W m

1 |Xn
2 , Sm

2 , Q) (89)

= I(Sm
1 ; W m

1 |Sm
2 ) + I(Xn

1 ; Y n
1 |X

n
2 , Q) (90)

= mI(S1; W1|S2) + nI(X1; Y1|X2, Q), (91)

and using the fact thatp(s1, s2, w1) = p(s1)p(s2)p(w1|s1, s2) we obtain (38) (similarly for (39)

and (40)). Note that, this approach provides achievable source-channel rates for general joint

distributions ofS1, S2 andW1.
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For the converse, we use Fano’s inequality given in (11) and (14). We have

1

n
I(Xn

1 ; Y n
1 |X

n
2 ) ≥

1

n
I(Sm

1 ; Y n
1 |X

n
2 ), (92)

=
1

n
I(Sm

1 , W m
1 ; Y n

1 |X
n
2 ), (93)

≥
1

n
I(Sm

1 ; Y n
1 |X

n
2 , W m

1 ),

≥
1

n
[H(Sm

1 |Sm
2 , W m

1 ) − mδ(P (m,n)
e )], (94)

≥
1

b
[H(S1|S2, W1) − δ(P (m,n)

e )],

where(92) follows from the Markov relationSm
1 −Xn

1 − Y n
1 given Xn

2 ; (93) from the Markov

relationW m
1 − (Xn

2 , Sm
1 ) − Y n

1 ; and (94) from Fano’s inequality (14).

We also have

1

n

n
∑

i=1

I(X1i; Y1,i|X2i) ≥
1

n
I(Xn

1 , Xn
2 ; Y n

1 )

≥
1

b
[H(S1|S2, W1) − δ(P (m,n)

e )].

Similarly, we have

1

n

n
∑

i=1

I(X2i; Y1,i|X1i) ≥
1

b
[H(S2|S1, W1) − δ(P (m,n)

e )],

and

1

n

n
∑

i=1

I(X1i, X2i; Y1,i) ≥
1

b
[H(S1, S2|W1) − δ(P (m,n)

e )].

As usual, we letP (m,n)
e → 0, and introduce the time sharing random variableQ uniformly

distributed over{1, 2, . . . , n} and independent of all the other random variables. Then we define

X1 , X1Q, X2 , X2Q andY1 , Y1Q. Note thatPr{X1 = x1, X2 = x2|Q = q} = Pr{X1|Q =

q} · Pr{X2|Q = q} since the two sources, and hence the channel codewords, are independent

of each other conditioned onQ. Thus, we obtain (38)-(40) for a joint distribution of the form

(41).

DRAFT



40

APPENDIX B

PROOF OFTHEOREM 6.3

We have

1

n
I(Xn

1 ; Y n
1 |X

n
2 ) ≥

1

n
I(Sm

1 ; Y n
1 |X

n
2 ), (95)

=
1

n
[H(Sm

1 |Xn
2 ) − H(Sm

1 |Y n
1 , Xn

2 )], (96)

≥
1

n
[H(Sm

1 ) − H(Sm
1 |Y n

1 )], (97)

≥
1

b

[

H(S1) − δ(P (m,n)
e )

]

, (98)

for any ǫ > 0 and sufficiently largem and n, where (95) follows from the conditional data

processing inequality sinceSm
1 − Xn

1 − Y n
1 forms a Markov chain givenXn

2 ; (97) from the

independence ofSm
1 andXn

2 and the fact that conditioning reduces entropy; and(98) from the

memoryless source assumption, and from Fano’s inequality.

For the joint mutual information, we can write the followingset of inequalities:

1

n
I(Xn

1 , Xn
2 ; Y n

1 ) ≥
1

n
I(Sm

1 , Sm
2 ; Y n

1 ), (99)

=
1

n
I(Sm

1 , Sm
2 , W m

1 ; Y n
1 ), (100)

≥
1

n
I(Sm

1 , Sm
2 ; Y n

1 |W
m
1 ), (101)

=
1

n
[H(Sm

1 , Sm
2 |W m

1 ) − H(Sm
1 , Sm

2 |Y n
1 , W m

1 )],

=
1

n
[H(Sm

1 ) + H(Sm
2 |W m

1 ) − H(Sm
1 , Sm

2 |Y n
1 , W m

1 )], (102)

≥
1

b

[

H(S1) + H(S2|W1) − δ(P (m,n)
e )

]

, (103)

for any ǫ > 0 and sufficiently largem and n, where (99) follows from the data processing

inequality since(Sm
1 , Sm

2 ) − (Xn
1 , Xn

2 ) − Y n
1 form a Markov chain;(100) from the Markov

relationW m
1 − (Sm

1 , Sm
2 ) − Y n

1 ; (101) from the chain rule and the non-negativity of the mutual

information;(102) from the independence ofSm
1 and(Sm

2 , W m
1 ); and(103) from the memoryless

source assumption and Fano’s inequality.

It is also possible to show that
n

∑

i=1

I(X1i; Y1i|X2i) ≥ I(Xn
1 ; Y n

1 |X
n
2 ), (104)

DRAFT



41

and similarly for other mutual information terms. Then, using the above set of inequalities and

letting P (m,n)
e → 0, we obtain

1

b
H(S1) ≤

1

n

n
∑

i=1

I(X1i; Y1i|X2i),

1

b
H(S2|W1) ≤

1

n

n
∑

i=1

I(X2i; Y1i|X1i),

and

1

b
(H(S1) + H(S2|W1)) ≤

1

n

n
∑

i=1

I(X1i, X2i; Y1i),

for any product distribution onX1×X2. We can write similar expressions for the second receiver

as well. Then the necessity of the conditions of Theorem 6.2 can be argued simply by inserting

the time-sharing random variableQ.
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